If it's not what You are looking for type in the equation solver your own equation and let us solve it.
95v^2-50v=0
a = 95; b = -50; c = 0;
Δ = b2-4ac
Δ = -502-4·95·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-50}{2*95}=\frac{0}{190} =0 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+50}{2*95}=\frac{100}{190} =10/19 $
| 6u^2+38u-28=0 | | 5v^2+20v+20=0 | | k=10(-7)−19 | | 25j^2-40j+16=0 | | h=50−35/5 | | 7p-8=2p(p+13) | | 72m^2-512=0 | | 5+0.5x=3 | | 17/13=6/x | | 9(c+10)=-99 | | 6g^2+35g-6=0 | | 4p^2-15p-4=0 | | 3x-17=-2x+8 | | 6t^2+20t=0 | | 28/62=4/x | | 3f^2+10f-13=0 | | x/1.5=30 | | 17f^2-35f+2=0 | | 10n^2+49n-5=0 | | 9×2^x-1=2×3^x | | 24n^2-2n-1=0 | | 0.75(20-p)+0.5p=13 | | 54=y+8 | | 2=6+c | | 2p^2-28p+98=0 | | -5=3x-14x= | | 3v^2+46v+15=0 | | f11= 4 | | 8.5=17/2+b | | 6j^2+76j-26=0 | | 4n^2-12n-7=0 | | X=20.00-0.08x |